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Myriad Planar Hexacoordinate Carbon Molecules Inviting Synthesis
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Molecules with planar hexacoordinate carbons (phC) are exciting ~ 1.593 2-
prospects. They violate both the usual maximum tetracoordination T —l
of carbon and its proclivity for three-dimensional bonding. Two
independent research groups discovered phC examples computa-
tionally in 2000. Exner and Schleyer’s @B (Figure 1,1) and the

1 (CBJ- Dgp, 6 m €) 2 (C3By, Cz 6me) 3 (CBgXaz, Dap)

isoelectronic GB, isomers (e.g.2) have six aromatier electrons: Vi, = 269.9 165.8 3a:X=NH,8ne
Minyaev and Gribanova proposed heteroatomic extensiohsvih Gap=2.20 3.45 3:X=0,8ne
eight-membered ring perimeters (Figure3l,X = NH and O): Figure 1. Previously reported phC minineBond lengths in A, the lowest
We confirm these to be minima, despite having eight, rather than frequency ¢min) in cm=1, HOMO—LUMO energy separation (Gap) in eV.
six 7 electrons (see Figure 14S for theMO’s of 3a). See Supporting Information Figure 5S for the geometrie3aoénd 3b.

In contrast to this limited number of phC’s, Wang and Schleyer 5
predicted numerous molecules with planar pentacoordinate carbons 153 g w_\ 1488
(ppC) in 2001. They showed how ppC chemistry might offer 1568 '
unlimited possibilities for generalization and experimental realiza- e 1390
tion.2 Appropriate ppC structural units can be grafted onto virtually 2 015 oot A A
any arene or unsaturated ring having three adjacent CH groups. 7 : ’ ' -
Likewise, generally applicable construction principles allow the “‘°“$:::_;§§':'5““’ 8 (CaHBe, o B e) 8 (CrHiBe, Can 102 )
incorporation of phC structural units, based on simple elaborations Gap=1.88 333 2m
of 1 and 3. The preparation of numerous planar tetracoordinate 1393 ’ e
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carbon compounds following theoretical predictibogfers hope 1390 1,407 15% ) :;_ﬁg-f?e

for the realization of phC's. 451 @;(1565 "___1_:499
R o R Vav B
1.509 1.516

Akin to principles devised for ppC%building block strategies

. 1.620
facilitate the design of numerous molecules with phC’s. The initial 1744 S ra0 1567 (1 . 1713 et
idea was based on the finding t@t, CH,Be?~ (4), the 1,2-dihydro 7 (CeHsBe, Cay 10 1 €) 8 (c,Hz'?ai:, Con1dne)
derivative ofl, retains the phC despite its ruptured BB ring bbnd vain = ! 5&4 gs'a
(albeit with somewhat elongated CB bond lengths). As in the design ap= '
of ppC molecules,the opened edge &f can be bridged and the 1,561 90

ring closed by appropriate atoms and groups. The selection of phC "X

examples in Figure 2 retains the planar hexacoordinate carbgn CB ¢ 1

unit. Like 3, more than one bridge is possible. Consequently, phC’s 1,628 @) ~1.640

can be grafted onto myriad systems. 9 (C,H,Be2, éf,1grce] 10 (C,HBg~, Cs,, 61€) 11 (CHNBg, Cy, 6 1 6)
The planar hypercoordinate bonding principles for phCs, like ‘E"Q"b==1u1.a1%9 2136 7

those for ppC'sS, are general and are easily extended to other 1571 2
combinations of atoms, with elements other than carbon in the 1,743+ 5-551_|
center® Thus, Minkin et al. computed examples of planar e /?5,3
hexacoordinate boron species in 20Gind the boron analogue of

4, C,, H,B7~ (S-4a see Figure 5S), was reported recently by ! 1.608
Boldyrev and co-worker$As in earlier studies of planar hyper- 12(CsH:Bs”, Doy 8 e) 13 (CsHiBe Co 6 ) 14 (CoHzBel, CanBe)
coordinationt*we focus here on carbon as the central element since Gap =190 1.58 1.79
violations of the conventional tetrahedral tetracoordinate bonding Figure 2. Examples of phC minima optimized at B3LYP/6-31#G**.
of carbon seem more unusual. While all our new phC molecules Bond distances are shown in A, the lowest frequeneyi) in cm™,
are local minimd, their isomers (e.g., with boron in the center and HOMO—LUMO energy separation (Gap) in eV.

carbon on the outside) can be lower in energy. However, such , . . .
) oy charges, oft with a CH=CH bridge, results in the neutral six

species are no less interesting inherently and illustrate the generality lect H.B- (5). Th iabl tical ionizati tential
of the bonding principles. electron GH2Bg (5). The appreciable vertical ionization potentials

The two hydrogens i provide substitution sites. Ring closure, (VIP) of 5 and other neutral species imply stability (Table 15).

for example, by replacing both the H’s, as well as the two negative The Six Wiberg bond indices (WBI) to the central c_arb_onSLn
ranging from 0.46 to 0.80, document the hexacoordination to the

t University of Georgia. B ring. The total WBI (3.86) of the central carbon does not violate
* Beijing Institute of Technology. octet rule expectations. Exchanging the central carbon with the three
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unique borons resulted in isomers (with hexacoordinate borons in (—55.8). Molecules like8 (X = NH and O),12, and14 demonstrate

the center and carbons in the perimeter) ranging between 18.5 andhat the totalr electron count is less important than the number of
30.8 kcal/mol lower in energy (see Figure 4S). However, a Born & electrons associated with the phC moiety. Evidently, delocalized
Oppenheimer molecular dynamics simulai¢@OMD, Figure 3S bonding of theo system is needed to achieve planar hypercoordi-
for the trajectory), using the deMon 2004 progréaemonstrates nation.

the viability of 5 as a local minimum and its resistance toward CBg units with planar hexacoordinate carbons (or borons) can
isomerization. Searches only located high-energy transition statesbe grafted onto olefins, arenes, or saturated carbon systems. Most
for isomerization. of these new phC candidates are doubly aromatic with delocalized

Benzannulation ob gives 6, the 10z electron analogue of o as well ast systems, but a total ofd+ 2 xr electrons is not
naphthalene. Similarly, the replacement of vicinal hydrogens in required. All these phC derivatives provide additional examples of
benzene and essentially all arenes by a GBup (i.e.,4 without deltahedral bonding involving carbon and offer many opportunities
its H’s) can yield new phC candidates. The tropylium ion derivative, for experimental realization.

CgHsBe™ (7), exemplifies other bicyclic systems. The tricyclic
minimum, C,, CgH,B1, (8), has two CR units, each with a phC,
graftedmetaonto benzene.

Elaborations oft with single-atom bridges result in phC minima
with seven-membered ring perimeters. For example, a methylene
group can replace the two H's ihand bridge the CB~ unit to
give Cs CoH2Bg?~ (9). While the methylene carbon i@ deviates
slightly from the CR plane, the planarity of the GBmoiety is Supporting Information Available: Optimized geometries of phC
nearly exact. Replacing the two H's fwith CH™ results inCa, and selected isomers, NIgSyrids of 5, CMO—NICS;; of selected
C,HBg™ (10); planarity is retained. Heteroatomic bridging groups molecules, MO figures, MD trajectory & a summary of NICS(1)
such as NH can result in favorable neutral phC minima, such as and dissected NICS(Lyesults and Gaussian archive files. This material
CHNBg (11). is available free of charge via the Internet at http://pubs.acs.org.
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